UCL  IRIS
Institutional Research Information Service
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Nonlinear two-dimensional free surface solutions of flow exiting a pipe and impacting a wedge
• Publication Type:
Journal article
• Publication Sub Type:
Article
• Authors:
Doak A, Vanden-Broeck J-M
• Publisher:
Springer Science and Business Media LLC
• Publication date:
01/02/2021
• Journal:
Journal of Engineering Mathematics
• Volume:
126
• Issue:
1
• Article number:
8
• Status:
Published
• Print ISSN:
0022-0833
• Language:
en
Abstract
AbstractThis paper concerns the flow of fluid exiting a two-dimensional pipe and impacting an infinite wedge. Where the flow leaves the pipe there is a free surface between the fluid and a passive gas. The model is a generalisation of both plane bubbles and flow impacting a flat plate. In the absence of gravity and surface tension, an exact free streamline solution is derived. We also construct two numerical schemes to compute solutions with the inclusion of surface tension and gravity. The first method involves mapping the flow to the lower half-plane, where an integral equation concerning only boundary values is derived. This integral equation is solved numerically. The second method involves conformally mapping the flow domain onto a unit disc in the s-plane. The unknowns are then expressed as a power series in s. The series is truncated, and the coefficients are solved numerically. The boundary integral method has the additional advantage that it allows for solutions with waves in the far-field, as discussed later. Good agreement between the two numerical methods and the exact free streamline solution provides a check on the numerical schemes.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
More search options
UCL Researchers
Author
Dept of Mathematics
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by