Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
New InhA Inhibitors Based on Expanded Triclosan and Di-Triclosan Analogues to Develop a New Treatment for Tuberculosis
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Chetty S, Armstrong T, Sharma Kharkwal S, Drewe WC, De Matteis CI, Evangelopoulos D, Bhakta S, Thomas NR
  • Publisher:
  • Publication date:
  • Pagination:
  • Journal:
  • Volume:
  • Issue:
  • Status:
  • Language:
The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) has reinforced the need for the development of new anti-TB drugs. The first line drug isoniazid inhibits InhA. This is a prodrug requiring activation by the enzyme KatG. Mutations in KatG have largely contributed to clinical isoniazid resistance. We aimed to design new ‘direct’ InhA inhibitors that obviate the need for activation by KatG, circumventing pre-existing resistance. In silico molecular modelling was used as part of a rational structure-based drug-design approach involving inspection of protein crystal structures of InhA:inhibitor complexes, including the broad spectrum antibiotic triclosan (TCS). One crystal structure exhibited the unusual presence of two triclosan molecules within the Mycobacterium tuberculosis InhA binding site. This became the basis of a strategy for the synthesis of novel inhibitors. A series of new, flexible ligands were designed and synthesised, expanding on the triclosan structure. Low Minimum Inhibitory Concentrations (MICs) were obtained for benzylphenyl compounds (12, 43 and 44) and di-triclosan derivative (39), against Mycobacterium bovis BCG although these may also be inhibiting other enzymes. The ether linked di-triclosan derivative (38) displayed excellent in vitro isolated enzyme inhibition results comparable with triclosan, but at a higher MIC (125 µg mL−1). These compounds offer good opportunities as leads for further optimisation.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Infection, Immunity & Inflammation Dept
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by