UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Anthropometric Markers and Iron Status of 6–12-Year-Old Thai Children: Associations and Predictors
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Suteerojntrakool O, Khongcharoensombat T, Chomtho S, Bongsebandhu-phubhakdi C, Tempark T, Fewtrell M
  • Publisher:
    Hindawi Limited
  • Publication date:
    13/04/2021
  • Pagination:
    1, 8
  • Journal:
    Journal of Nutrition and Metabolism
  • Volume:
    2021
  • Status:
    Published
  • Print ISSN:
    2090-0724
  • Language:
    en
Abstract
Introduction. Obesity may be associated with poor iron status. The objective of this study was to investigate the association between different indices of iron status and anthropometric measurements in Thai children. Materials and Methods. Anthropometry (weight, height, waist circumference (WC), and body composition assessed by bioelectrical impedance analysis) and iron indices were measured in 336 Thai children aged 6–12 years. Iron deficiency (ID) was defined using two or more of the following: (1) %transferrin saturation (%Tsat) < 16%; (2) serum ferritin (SF) < 15 μg/mL; and (3) soluble transferrin receptor (sTfR) > 5 mg/L. Iron deficiency anaemia (IDA) was defined as haemoglobin < WHO age cutoff combined with ID. Overweight and obesity were defined as body mass index (BMI) standard deviation score (SDS) ≥ +1 SDS or +2 SDS, respectively (WHO growth reference). Results. BMI SDS was significantly positively correlated with sTfR and SF (sTfR, r: 0.209, p  < 0.001; SF, r: 0.214, p  < 0.001) and negatively correlated with %Tsat (r: −0.132, p  = 0.013). Correlations between WC SDS and %fat mass and each iron marker were similar. The percentage with low SF was significantly lower than that using other individual markers. ID prevalence was not significantly different between normal-weight and overweight/obesity groups although a significantly higher proportion of overweight/obese children had sTfR >5 mg/L. Puberty and menarche were significant predictors of ID (puberty adjusted OR: 2.20, 95% CI: 0.43, 11.25; menarche adjusted OR: 6.11, 95% CI: 1.21, 30.94). Conclusion. Greater adiposity was associated with poorer iron status. However, SF may not be a good indicator of iron status in Thai children, particularly in those who are overweight/obese, whereas sTfR merits further investigation.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Population, Policy & Practice Dept
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by