Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Sequence-Level Reference Frames In Video Coding
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Jubran M, Abbas A, Andreopoulos Y
  • Publication date:
  • Journal:
    IEEE Transactions on Circuits and Systems for Video Technology
  • Status:
  • Print ISSN:
The proliferation of low-cost DRAM chipsets now begins to allow for the consideration of substantially-increased decoded picture buffers in advanced video coding standards such as HEVC, VVC, and Google VP9. At the same time, the increasing demand for rapid scene changes and multiple scene repetitions in entertainment or broadcast content indicates that extending the frame referencing interval to tens of minutes or even the entire video sequence may offer coding gains, as long as one is able to identify frame similarity in a computationally- and memory-efficient manner. Motivated by these observations, we propose a “stitching” method that defines a reference buffer and a reference frame selection algorithm. Our proposal extends the referencing interval of inter-frame video coding to the entire length of video sequences. Our reference frame selection algorithm uses well-established feature descriptor methods that describe frame structural elements in a compact and semantically-rich manner. We propose to combine such compact descriptors with a similarity scoring mechanism in order to select the frames to be “stitched” to reference picture buffers of advanced inter-frame encoders like HEVC, VVC, and VP9 without breaking standard compliance. Our evaluation on synthetic and real-world video sequences with the HEVC and VVC reference encoders shows that our method offers significant rate gains, with complexity and memory requirements that remain manageable for practical encoders and decoders.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Electronic & Electrical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by