UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Methods for Molecular Modelling of Protein Complexes.
  • Publication Type:
    Chapter
  • Authors:
    Kanitkar TR, Sen N, Nair S, Soni N, Amritkar K, Ramtirtha Y, Madhusudhan MS
  • Publisher:
    Humana Press
  • Publication date:
    06/05/2021
  • Pagination:
    53, 80
  • Volume:
    2305
  • Status:
    Published
  • Language:
    eng
  • Keywords:
    3D structure modelling, Molecular docking, Protein-biomolecular complexes, Scoring and sampling
Abstract
Biological processes are often mediated by complexes formed between proteins and various biomolecules. The 3D structures of such protein-biomolecule complexes provide insights into the molecular mechanism of their action. The structure of these complexes can be predicted by various computational methods. Choosing an appropriate method for modelling depends on the category of biomolecule that a protein interacts with and the availability of structural information about the protein and its interacting partner. We intend for the contents of this chapter to serve as a guide as to what software would be the most appropriate for the type of data at hand and the kind of 3D complex structure required. Particularly, we have dealt with protein-small molecule ligand, protein-peptide, protein-protein, and protein-nucleic acid interactions.Most, if not all, model building protocols perform some sampling and scoring. Typically, several alternate conformations and configurations of the interactors are sampled. Each such sample is then scored for optimization. To boost the confidence in these predicted models, their assessment using other independent scoring schemes besides the inbuilt/default ones would prove to be helpful. This chapter also lists such software and serves as a guide to gauge the fidelity of modelled structures of biomolecular complexes.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Structural & Molecular Biology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by