Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Refining clinical algorithms for a neonatal digital platform for low-income countries: a modified Delphi technique
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Evans M, Corden MH, Crehan C, Fitzgerald F, Heys M
  • Publication date:
  • Pagination:
  • Journal:
    BMJ Open
  • Volume:
  • Issue:
  • Status:
  • Country:
  • PII:
  • Language:
  • Keywords:
    information technology, neonatal intensive & critical care, neonatology, public health
OBJECTIVES: To determine whether a panel of neonatal experts could address evidence gaps in local and international neonatal guidelines by reaching a consensus on four clinical decision algorithms for a neonatal digital platform (NeoTree). DESIGN: Two-round, modified Delphi technique. SETTING AND PARTICIPANTS: Participants were neonatal experts from high-income and low-income countries (LICs). METHODS: This was a consensus-generating study. In round 1, experts rated items for four clinical algorithms (neonatal sepsis, hypoxic ischaemic encephalopathy, respiratory distress of the newborn, hypothermia) and justified their responses. Items meeting consensus for inclusion (≥80% agreement) were incorporated into the algorithms. Items not meeting consensus were either excluded, included following revisions or included if they contained core elements of evidence-based guidelines. In round 2, experts rated items from round 1 that did not reach consensus. RESULTS: Fourteen experts participated in round 1, 10 in round 2. Nine were from high-income countries, five from LICs. Experts included physicians and nurse practitioners with an average neonatal experience of 20 years, 12 in LICs. After two rounds, a consensus was reached on 43 of 84 items (52%). Per experts' recommendations, items in line with local and WHO guidelines yet not meeting consensus were still included to encourage consistency for front-line healthcare workers. As a result, the final algorithms included 53 items (62%). CONCLUSION: Four algorithms in a neonatal digital platform were reviewed and refined by consensus expert opinion. Revisions to NeoTree will be made in response to these findings. Next steps include clinical validation of the algorithms.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Infection, Immunity & Inflammation Dept
Population, Policy & Practice Dept
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by