UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Gene therapy restores dopamine transporter expression and ameliorates pathology in iPSC and mouse models of infantile parkinsonism.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Ng J, Barral S, De La Fuente Barrigon C, Lignani G, Erdem FA, Wallings R, Privolizzi R, Rossignoli G, Alrashidi H, Heasman S, Meyer E, Ngoh A, Pope S, Karda R, Perocheau D, Baruteau J, Suff N, Antinao Diaz J, Schorge S, Vowles J, Marshall LR, Cowley SA, Sucic S, Freissmuth M, Counsell JR, Wade-Martins R, Heales SJR, Rahim AA, Bencze M, Waddington SN, Kurian MA
  • Publisher:
    American Association for the Advancement of Science
  • Publication date:
    19/05/2021
  • Journal:
    Science Translational Medicine
  • Volume:
    13
  • Issue:
    594
  • Status:
    Published
  • Country:
    United States
  • Print ISSN:
    1946-6234
  • PII:
    13/594/eaaw1564
  • Language:
    eng
Abstract
Most inherited neurodegenerative disorders are incurable, and often only palliative treatment is available. Precision medicine has great potential to address this unmet clinical need. We explored this paradigm in dopamine transporter deficiency syndrome (DTDS), caused by biallelic loss-of-function mutations in SLC6A3, encoding the dopamine transporter (DAT). Patients present with early infantile hyperkinesia, severe progressive childhood parkinsonism, and raised cerebrospinal fluid dopamine metabolites. The absence of effective treatments and relentless disease course frequently leads to death in childhood. Using patient-derived induced pluripotent stem cells (iPSCs), we generated a midbrain dopaminergic (mDA) neuron model of DTDS that exhibited marked impairment of DAT activity, apoptotic neurodegeneration associated with TNFα-mediated inflammation, and dopamine toxicity. Partial restoration of DAT activity by the pharmacochaperone pifithrin-μ was mutation-specific. In contrast, lentiviral gene transfer of wild-type human SLC6A3 complementary DNA restored DAT activity and prevented neurodegeneration in all patient-derived mDA lines. To progress toward clinical translation, we used the knockout mouse model of DTDS that recapitulates human disease, exhibiting parkinsonism features, including tremor, bradykinesia, and premature death. Neonatal intracerebroventricular injection of human SLC6A3 using an adeno-associated virus (AAV) vector provided neuronal expression of human DAT, which ameliorated motor phenotype, life span, and neuronal survival in the substantia nigra and striatum, although off-target neurotoxic effects were seen at higher dosage. These were avoided with stereotactic delivery of AAV2.SLC6A3 gene therapy targeted to the midbrain of adult knockout mice, which rescued both motor phenotype and neurodegeneration, suggesting that targeted AAV gene therapy might be effective for patients with DTDS.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Maternal & Fetal Medicine
Author
Developmental Neurosciences Dept
Author
Genetics & Genomic Medicine Dept
Author
Genetics & Genomic Medicine Dept
Author
Maternal & Fetal Medicine
Author
Developmental Neurosciences Dept
Author
Clinical & Experimental Epilepsy
Author
Maternal & Fetal Medicine
Author
Genetics & Genomic Medicine Dept
Author
Neurodegenerative Diseases
Author
Maternal & Fetal Medicine
Author
Pharmacology
Author
Neuro, Physiology & Pharmacology
Author
Maternal & Fetal Medicine
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by