UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Charge Condensation and Lattice Coupling Drives Stripe Formation in Nickelates
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Shen Y, Fabbris G, Miao H, Cao Y, Meyers D, Mazzone DG, Assefa T, Chen XM, Kisslinger K, Prabhakaran D, Boothroyd AT, Tranquada JM, Hu W, Barbour AM, Wilkins SB, Mazzoli C, Robinson IK, Dean MPM
  • Publication date:
    30/04/2021
  • Journal:
    Physical Review Letters
  • Volume:
    126
  • Issue:
    17
  • Status:
    Published
  • Print ISSN:
    0031-9007
Abstract
Revealing the predominant driving force behind symmetry breaking in correlated materials is sometimes a formidable task due to the intertwined nature of different degrees of freedom. This is the case for La2-xSrxNiO4+δ, in which coupled incommensurate charge and spin stripes form at low temperatures. Here, we use resonant x-ray photon correlation spectroscopy to study the temporal stability and domain memory of the charge and spin stripes in La2-xSrxNiO4+δ. Although spin stripes are more spatially correlated, charge stripes maintain a better temporal stability against temperature change. More intriguingly, charge order shows robust domain memory with thermal cycling up to 250 K, far above the ordering temperature. These results demonstrate the pinning of charge stripes to the lattice and that charge condensation is the predominant factor in the formation of stripe orders in nickelates.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
London Centre for Nanotechnology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by