Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
The formation of a Sn monolayer on Ge(1 0 0) studied at the atomic scale
The growth of multi-layer germanium-tin (GeSn) quantum wells offers an intriguing pathway towards the integration of lasers in a CMOS platform. An important step in growing high quality quantum well interfaces is the formation of an initial wetting layer. However, key atomic-scale details of this process have not previously been discussed. We use scanning tunneling microscopy combined with density functional theory to study the deposition of Sn on Ge(1 0 0) at room temperature over a coverage range of 0.01 to 1.24 monolayers. We demonstrate the formation of a sub-2% Ge content GeSn wetting layer from three atomic-scale characteristic ad-dimer structural components, and show that small quantities of Sn incorporate into the Ge surface forming two atomic configurations. The ratio of the ad-dimer structures changes with increasing Sn coverage, indicating a change in growth kinetics. At sub-monolayer coverage, the least densely packing ad-dimer structure is most abundant. As the layer closes, forming a two-dimensional wetting layer, the more densely packing ad-dimer structure become dominant. These results demonstrate the capability to form an atomically smooth wetting layer at room temperature, and provide critical atomic-scale insights for the optimization of growth processes of GeSn multi-quantum-wells to meet the quality requirements of optical GeSn-based devices.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
London Centre for Nanotechnology
London Centre for Nanotechnology
London Centre for Nanotechnology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by