UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
An intuitive surgical handle design for robotic neurosurgery
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Dimitrakakis E, Lindenroth L, Dwyer G, Aylmore H, Dorward NL, Marcus HJ, Stoyanov D
  • Publisher:
    Springer Science and Business Media LLC
  • Publication date:
    24/05/2021
  • Journal:
    International Journal of Computer Assisted Radiology and Surgery
  • Status:
    Published online
  • Print ISSN:
    1861-6410
  • Language:
    en
Abstract
PURPOSE: The expanded endoscopic endonasal approach, a representative example of keyhole brain surgery, allows access to the pituitary gland and surrounding areas through the nasal and sphenoid cavities. Manipulating rigid instruments through these constrained spaces makes this approach technically challenging, and thus, a handheld robotic instrument could expand the surgeon's capabilities. In this study, we present an intuitive handle prototype for such a robotic instrument. METHODS: We have designed and fabricated a surgical instrument handle prototype that maps the surgeon's wrist directly to the robot joints. To alleviate the surgeon's wrist of any excessive strain and fatigue, the tool is mounted on the surgeon's forearm, making it parallel with the instrument's shaft. To evaluate the handle's performance and limitations, we constructed a surgical task simulator and compared our novel handle with a standard neurosurgical tool, with the tasks being performed by a consultant neurosurgeon. RESULTS: While using the proposed handle, the surgeon's average success rate was [Formula: see text], compared to [Formula: see text] when using a conventional tool. Additionally, the surgeon's body posture while using the suggested prototype was deemed acceptable by the Rapid Upper Limb Assessment ergonomic survey, while early results indicate the absence of a learning curve. CONCLUSIONS: Based on these preliminary results, the proposed handle prototype could offer an improvement over current neurosurgical tools and procedural ergonomics. By redirecting forces applied during the procedure to the forearm of the surgeon, and allowing for intuitive surgeon wrist to robot-joints movement mapping without compromising the robotic end effector's expanded workspace, we believe that this handle could prove a substantial step toward improved neurosurgical instrumentation.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Dept of Med Phys & Biomedical Eng
Author
Dept of Computer Science
Author
UCL Queen Square Institute of Neurology
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by