Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Revealing spatiotemporal transmission patterns and stages of COVID-19 in China using individual patients’ trajectory data
  • Publication Type:
    Journal article
  • Authors:
    Cheng T, Lu T, Liu Y, Gao X, Zhang X
  • Publisher:
    Springer Science and Business Media LLC
  • Publication date:
  • Journal:
    Computational Urban Science
  • Volume:
  • Issue:
  • Article number:
  • Status:
  • Language:
  • Keywords:
    Viral transmission, COVID-19, Patient trajectory, Spatiotemporal data mining
  • Notes:
    This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Gauging viral transmission through human mobility in order to contain the COVID-19 pandemic has been a hot topic in academic studies and evidence-based policy-making. Although it is widely accepted that there is a strong positive correlation between the transmission of the coronavirus and the mobility of the general public, there are limitations to existing studies on this topic. For example, using digital proxies of mobile devices/apps may only partially reflect the movement of individuals; using the mobility of the general public and not COVID-19 patients in particular, or only using places where patients were diagnosed to study the spread of the virus may not be accurate; existing studies have focused on either the regional or national spread of COVID-19, and not the spread at the city level; and there are no systematic approaches for understanding the stages of transmission to facilitate the policy-making to contain the spread. To address these issues, we have developed a new methodological framework for COVID-19 transmission analysis based upon individual patients’ trajectory data. By using innovative space–time analytics, this framework reveals the spatiotemporal patterns of patients’ mobility and the transmission stages of COVID-19 from Wuhan to the rest of China at finer spatial and temporal scales. It can improve our understanding of the interaction of mobility and transmission, identifying the risk of spreading in small and medium-sized cities that have been neglected in existing studies. This demonstrates the effectiveness of the proposed framework and its policy implications to contain the COVID-19 pandemic.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Civil, Environ &Geomatic Eng
Dept of Civil, Environ &Geomatic Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by