UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Temporally delayed linear modelling (TDLM) measures replay in both animals and humans.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Liu Y, Dolan RJ, Higgins C, Penagos H, Woolrich MW, Ólafsdóttir HF, Barry C, Kurth-Nelson Z, Behrens TE
  • Publication date:
    07/06/2021
  • Journal:
    Elife
  • Volume:
    10
  • Status:
    Published online
  • Country:
    England
  • PII:
    66917
  • Language:
    eng
  • Keywords:
    human, mouse, neuroscience
Abstract
There are rich structures in off-task neural activity which are hypothesised to reflect fundamental computations across a broad spectrum of cognitive functions. Here, we develop an analysis toolkit - Temporal Delayed Linear Modelling (TDLM) for analysing such activity. TDLM is a domain-general method for finding neural sequences that respect a pre-specified transition graph. It combines nonlinear classification and linear temporal modelling to test for statistical regularities in sequences of task-related reactivations. TDLM is developed on the non-invasive neuroimaging data and is designed to take care of confounds and maximize sequence detection ability. Notably, as a linear framework, TDLM can be easily extended, without loss of generality, to capture rodent replay in electrophysiology, including in continuous spaces, as well as addressing second-order inference questions, e.g., its temporal and spatial varying pattern. We hope TDLM will advance a deeper understanding of neural computation and promote a richer convergence between animal and human neuroscience.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Cell & Developmental Biology
Author
Imaging Neuroscience
Author
Imaging Neuroscience
Author
Imaging Neuroscience
Author
Imaging Neuroscience
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by