UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Multicore fiber-assisted photonic sub-THz generation for full-duplex wireless transmission
  • Publication Type:
    Conference
  • Authors:
    Morant M, Gonzalez-Guerrero L, Renaud CC, Llorente R
  • Publisher:
    SPIE
  • Publication date:
    05/03/2021
  • Published proceedings:
    Proceedings of SPIE - The International Society for Optical Engineering
  • Volume:
    11711
  • ISBN-13:
    9781510642577
  • Status:
    Published
  • Name of conference:
    SPIE OPTO
  • Print ISSN:
    0277-786X
Abstract
This paper evaluates experimentally a centralized radio access network (C-RAN) based on multi-core fiber (MCF) for the transmission of high-bandwidth signals in the sub-THz band. We compare the system performance when the data and carrier wavelengths to be mixed at the receiver for optical heterodyning are transmitted over the same or over different cores of a MCF link. Full-duplex transmission on MCF is evaluated using the same received wireless signal downconverted and transmitted back as uplink over the same carrier wavelength. The performance with different digital signal processing (DSP) configurations and with higher-power interference in the other cores are also analyzed in this work. Successful provision of 12.5 GBd 16QAM signals is achieved after 1-km of 7-core MCF transmission including a short wireless link at 182 GHz, obtained with optical heterodyning. C-RAN implementation with MCF simplifies the remote nodes as all the lasers can be located in the central office, while minimizing the number of lasers needed at the central office thanks to wavelength re-use. It also provides more flexibility to the system, as it enables using the same LO for different purposes (i.e. THz generation of other data or optical modulation for uplink transmission). © 2021 SPIE.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Electronic & Electrical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by