UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Deep learning of HIV field-based rapid tests
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Letter
  • Authors:
    Turbé V, Herbst C, Mngomezulu T, Meshkinfamfard S, Dlamini N, Mhlongo T, Smit T, Cherepanova V, Shimada K, Budd J, Arsenov N, Gray S, Pillay D, Herbst K, Shahmanesh M, McKendry RA
  • Publication date:
    01/07/2021
  • Journal:
    Nature Medicine
  • Status:
    Published
  • Print ISSN:
    1078-8956
Abstract
Although deep learning algorithms show increasing promise for disease diagnosis, their use with rapid diagnostic tests performed in the field has not been extensively tested. Here we use deep learning to classify images of rapid human immunodeficiency virus (HIV) tests acquired in rural South Africa. Using newly developed image capture protocols with the Samsung SM-P585 tablet, 60 fieldworkers routinely collected images of HIV lateral flow tests. From a library of 11,374 images, deep learning algorithms were trained to classify tests as positive or negative. A pilot field study of the algorithms deployed as a mobile application demonstrated high levels of sensitivity (97.8%) and specificity (100%) compared with traditional visual interpretation by humans—experienced nurses and newly trained community health worker staff—and reduced the number of false positives and false negatives. Our findings lay the foundations for a new paradigm of deep learning–enabled diagnostics in low- and middle-income countries, termed REASSURED diagnostics1, an acronym for real-time connectivity, ease of specimen collection, affordable, sensitive, specific, user-friendly, rapid, equipment-free and deliverable. Such diagnostics have the potential to provide a platform for workforce training, quality assurance, decision support and mobile connectivity to inform disease control strategies, strengthen healthcare system efficiency and improve patient outcomes and outbreak management in emerging infections.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Div of Medicine
Author
Centre for Advanced Spatial Analysis
Author
London Centre for Nanotechnology
Author
Div of Infection & Immunity
Author
Infection & Population Health
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by