UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Asymmetric Synthesis and Biological Screening of Quinoxaline-Containing Synthetic Lipoxin A₄ Mimetics (QNX-sLXms)
  • Publication Type:
    Journal article
  • Authors:
    De Gaetano M, Tighe C, Gahan K, Zanetti A, Chen J, Newson J, Cacace A, Marai M, Gaffney A, Brennan E, Kantharidis P, Cooper ME, Leroy X, Perretti M, Gilroy D, Godson C, Guiry PJ
  • Publication date:
    17/06/2021
  • Journal:
    Journal of Medicinal Chemistry
  • Status:
    Accepted
  • Country:
    United States
  • Language:
    English
  • Keywords:
    Peptides and proteins, Inorganic compounds, Antiinflammatories, Particulate matter, Inflammation
  • Notes:
    This is an Open Access article published under a Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/).
Abstract
Failure to resolve inflammation underlies many prevalent pathologies. Recent insights have identified lipid mediators, typified by lipoxins (LXs), as drivers of inflammation resolution, suggesting potential therapeutic benefit. We report the asymmetric preparation of novel quinoxaline-containing synthetic-LXA4-mimetics (QNX-sLXms). Eight novel compounds were screened for their impact on inflammatory responses. Structure–activity relationship (SAR) studies showed that (R)-6 (also referred to as AT-02-CT) was the most efficacious and potent anti-inflammatory compound of those tested. (R)-6 significantly attenuated lipopolysaccharide (LPS)- and tumor-necrosis-factor-α (TNF-α)-induced NF-κB activity in monocytes and vascular smooth muscle cells. The molecular target of (R)-6 was investigated. (R)-6 activated the endogenous LX receptor formyl peptide receptor 2 (ALX/FPR2). The anti-inflammatory properties of (R)-6 were further investigated in vivo in murine models of acute inflammation. Consistent with in vitro observations, (R)-6 attenuated inflammatory responses. These results support the therapeutic potential of the lead QNX-sLXm (R)-6 in the context of novel inflammatory regulators.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Div of Medicine
Author
UCL School of Pharmacy
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by