UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Comparative study of a continuous train of theta-burst stimulation for a duration of 20 s (cTBS 300) versus a duration of 40 s (cTBS 600) in a pre-stimulation relaxed condition in healthy volunteers
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Haeckert J, Rothwell J, Hannah R, Hasan A, Strube W
  • Publication date:
    01/06/2021
  • Journal:
    Brain Sciences
  • Volume:
    11
  • Issue:
    6
  • Status:
    Published
Abstract
As variable after effects have been observed following phasic muscle contraction prior to continuous theta-burst stimulation (cTBS), we here investigated two cTBS protocols (cTBS300 and cTBS600) in 20 healthy participants employing a pre-relaxed muscle condition including visual feedback on idle peripheral surface EMG activity. Furthermore, we assessed corticospinal excitability measures also from a pre-relaxed state to better understand the potential impact of these proposed contributors to TBS. Motor-evoked potential (MEP) magnitude changes were assessed for 30 min. The linear model computed across both experimental paradigms (cTBS300 and cTBS600) revealed a main effect of TIME COURSE (p = 0.044). Separate exploratory analysis for cTBS300 revealed a main effect of TIME COURSE (p = 0.031), which did not maintain significance after Greenhouse-Geisser correction (p = 0.073). For cTBS600, no main effects were observed. An exploratory analysis revealed a correlation between relative SICF at 2.0 ms (p = 0.006) and after effects (relative mean change) of cTBS600, which did not survive correction for multiple testing. Our findings thereby do not support the hypothesis of a specific excitability modulating effect of cTBS applied to the human motor-cortex in setups with pre-relaxed muscle conditions.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by