Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to
your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Dystrophin regulates peripheral circadian SRF signalling
-
Publication Type:Working discussion paper
-
Authors:Betts C, Jagannath A, van Westering TLE, Bowerman M, Banerjee S, Meng J, Falzarano MS, Cravo L, McClorey G, Meijboom K, Bhomra A, Lim WF, Rinaldi C, Counsell J, Chwalenia K, O’Donovan E, Saleh A, Gait M, Morgan J, Ferlini A, Foster R, Wood MJA
-
Publication date:23/06/2021
-
Status:Published
Abstract
Dystrophin is a sarcolemmal protein essential for muscle contraction and maintenance, absence of which leads to the devastating muscle wasting disease Duchenne muscular dystrophy (DMD)[1, 2]. Dystrophin has an actin-binding domain [3–5], which specifically binds and stabilises filamentous (F)-actin[6], an integral component of the RhoA-actin-serum response factor (SRF)-pathway[7]. The RhoA-actin-SRF-pathway plays an essential role in circadian signalling whereby the hypothalamic suprachiasmatic nucleus, transmits systemic cues to peripheral tissues, activating SRF and transcription of clock target genes[8, 9]. Given dystrophin binds F-actin and disturbed SRF-signalling disrupts clock entrainment, we hypothesised that dystrophin loss causes circadian deficits. Here we show for the first time alterations in the RhoA-actin-SRF-signalling-pathway, in both dystrophin-deficient myotubes and dystrophic mouse models. Specifically, we demonstrate reduced F/G-actin ratios and nuclear MRTF, dysregulation of core clock and downstream target-genes, and down-regulation of key circadian genes in muscle biopsies from DMD patients harbouring an array of mutations. Further, disrupted circadian locomotor behaviour was observed in dystrophic mice indicative of disrupted SCN signalling, and indeed dystrophin protein was absent in the SCN of dystrophic animals. Dystrophin is thus a critically important component of the RhoA-actin-SRF-pathway and a novel mediator of circadian signalling in peripheral tissues, loss of which leads to circadian dysregulation.
› More search options
UCL Researchers