UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Prescience: Probabilistic Guidance on the Retraining Conundrum for Malware Detection
  • Publication Type:
    Conference
  • Authors:
    Deo A, Dash SK, Suarez-Tangil G, Vovk V, Cavallaro L
  • Publication date:
    28/10/2016
  • Language:
    English
  • Notes:
    Acceptance Rate: 32%
Abstract
Malware evolves perpetually and relies on increasingly sophisticatedattacks to supersede defense strategies. Datadrivenapproaches to malware detection run the risk of becomingrapidly antiquated. Keeping pace with malwarerequires models that are periodically enriched with freshknowledge, commonly known as retraining. In this work,we propose the use of Venn-Abers predictors for assessingthe quality of binary classification tasks as a first step towardsidentifying antiquated models. One of the key bene-fits behind the use of Venn-Abers predictors is that they areautomatically well calibrated and offer probabilistic guidanceon the identification of nonstationary populations ofmalware. Our framework is agnostic to the underlying classificationalgorithm and can then be used for building betterretraining strategies in the presence of concept drift. Resultsobtained over a timeline-based evaluation with about 90Ksamples show that our framework can identify when modelstend to become obsolete.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by