Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Monitoring phagocytic uptake of amyloid beta into glial cell lysosomes in real time
  • Publication Type:
    Journal article
  • Authors:
    Prakash P, Jethava KP, Korte N, Izquierdo P, Favuzzi E, Rose IVL, Guttenplan KA, Manchanda P, Dutta S, Rochet J-C, Fishell G, Liddelow SA, Attwell D, Chopra G
  • Publisher:
  • Publication date:
  • Journal:
    Chemical Science
  • Status:
  • Language:
  • Notes:
    © Royal Society of Chemistry 2021. This article is Open Access (http://creativecommons.org/licenses/by/3.0/).
Phagocytosis by glial cells is essential to regulate brain function during health and disease. Therapies for Alzheimer's disease (AD) have primarily focused on targeting antibodies to amyloid β (Aβ) or inhibitng enzymes that make it, and while removal of Aβ by phagocytosis is protective early in AD it remains poorly understood. Impaired phagocytic function of glial cells during later stages of AD likely contributes to worsened disease outcome, but the underlying mechanisms of how this occurs remain unknown. We have developed a human Aβ_{1-42} analogue (Aβ^{pH}) that exhibits green fluorescence upon internalization into the acidic organelles of cells but is non-fluorescent at physiological pH. This allowed us to image, for the first time, glial uptake of Aβ^{pH} in real time in live animals. We find that microglia phagocytose more AβpH than astrocytes in culture, in brain slices and in vivo. Aβ^{pH} can be used to investigate the phagocytic mechanisms responsible for removing Aβ from the extracellular space, and thus could become a useful tool to study Aβ clearance at different stages of AD.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Neuro, Physiology & Pharmacology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by