Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
High-Throughput Digital Image Analysis Reveals Distinct Patterns of Dystrophin Expression in Dystrophinopathy Patients
  • Publication Type:
    Journal article
  • Authors:
    Torelli S, Scaglioni D, Sardone V, Ellis MJ, Domingos J, Jones A, Feng L, Chambers D, Eastwood DM, Leturcq F, Yaou RB, Urtizberea A, Sabouraud P, Barnerias C, Stojkovic T, Ricci E, Beuvin M, Bonne G, Sewry CA, Willis T, Kulshrestha R, Tasca G, Phadke R, Morgan JE, Muntoni F
  • Publication date:
  • Journal:
    Journal of Neuropathology & Experimental Neurology
  • Article number:
  • Status:
  • Country:
  • PII:
  • Language:
  • Keywords:
    Becker muscular dystrophy, Duchenne muscular dystrophy, Dystrophin, High–throughput digital analysis, Muscle biopsy, Skeletal muscle
  • Notes:
    © 2021 American Association of Neuropathologists, Inc. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Duchenne muscular dystrophy (DMD) is an incurable disease caused by out-of-frame DMD gene deletions while in frame deletions lead to the milder Becker muscular dystrophy (BMD). In the last decade several antisense oligonucleotides drugs have been developed to induce a partially functional internally deleted dystrophin, similar to that produced in BMD, and expected to ameliorate the disease course. The pattern of dystrophin expression and functionality in dystrophinopathy patients is variable due to multiple factors, such as molecular functionality of the dystrophin and its distribution. To benchmark the success of therapeutic intervention, a clear understanding of dystrophin expression patterns in dystrophinopathy patients is vital. Recently, several groups have used innovative techniques to quantify dystrophin in muscle biopsies of children but not in patients with milder BMD. This study reports on dystrophin expression using both Western blotting and an automated, high-throughput, image analysis platform in DMD, BMD, and intermediate DMD/BMD skeletal muscle biopsies. Our results found a significant correlation between Western blot and immunofluorescent quantification indicating consistency between the different methodologies. However, we identified significant inter- and intradisease heterogeneity of patterns of dystrophin expression in patients irrespective of the amount detected on blot, due to variability in both fluorescence intensity and dystrophin sarcolemmal circumference coverage. Our data highlight the heterogeneity of the pattern of dystrophin expression in BMD, which will assist the assessment of dystrophin restoration therapies.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Developmental Neurosciences Dept
Div of Surgery & Interventional Sci
Developmental Neurosciences Dept
Developmental Neurosciences Dept
Institute of Cardiovascular Science
Developmental Neurosciences Dept
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by