UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Reward learning and working memory: Effects of massed versus spaced training and post-learning delay period
  • Publication Type:
    Journal article
  • Authors:
    Wimmer GE, Poldrack RA
  • Publication date:
    14/09/2021
  • Journal:
    Memory & Cognition
  • Medium:
    Print-Electronic
  • Status:
    Accepted
  • Language:
    English
  • Keywords:
    Reinforcement learning, Working memory, Spacing, Reward, Habit, Decision-making
  • Notes:
    © 2021 Springer Nature Switzerland AG. This article is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
Abstract
Neuroscience research has illuminated the mechanisms supporting learning from reward feedback, demonstrating a critical role for the striatum and midbrain dopamine system. However, in humans, short-term working memory that is dependent on frontal and parietal cortices can also play an important role, particularly in commonly used paradigms in which learning is relatively condensed in time. Given the growing use of reward-based learning tasks in translational studies in computational psychiatry, it is important to understand the extent of the influence of working memory and also how core gradual learning mechanisms can be better isolated. In our experiments, we manipulated the spacing between repetitions along with a post-learning delay preceding a test phase. We found that learning was slower for stimuli repeated after a long delay (spaced-trained) compared to those repeated immediately (massed-trained), likely reflecting the remaining contribution of feedback learning mechanisms when working memory is not available. For massed learning, brief interruptions led to drops in subsequent performance, and individual differences in working memory capacity positively correlated with overall performance. Interestingly, when tested after a delay period but not immediately, relative preferences decayed in the massed condition and increased in the spaced condition. Our results provide additional support for a large role of working memory in reward-based learning in temporally condensed designs. We suggest that spacing training within or between sessions is a promising approach to better isolate and understand mechanisms supporting gradual reward-based learning, with particular importance for understanding potential learning dysfunctions in addiction and psychiatric disorders.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Imaging Neuroscience
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by