Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Lifetime effects and satellites in the photoelectron spectrum of tungsten metal
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Kalha C, Ratcliff LE, Moreno JJG, Mohr S, Mantsinen M, Fernando NK, Thakur PK, Lee T-L, Tseng H-H, Nunney TS, Kahk JM, Lischner J, Regoutz A
  • Publisher:
    American Physical Society
  • Publication date:
  • Journal:
    Physical Review B: Condensed Matter and Materials Physics
  • Status:
  • Print ISSN:
  • Keywords:
    cond-mat.mtrl-sci, cond-mat.mtrl-sci
Tungsten is an important and versatile transition metal and has a firm place at the heart of many technologies. A popular experimental technique for the characterisation of tungsten and tungsten-based compounds is X-ray photoelectron spectroscopy (XPS), which enables the assessment of chemical states and electronic structure through the collection of core level and valence band spectra. However, in the case of metallic tungsten, open questions remain regarding the origin, nature, and position of satellite features that are prominent in the photoelectron spectrum. These satellites are a fingerprint of the electronic structure of the material and have not been thoroughly investigated, at times leading to their misinterpretation. The present work combines high-resolution soft and hard X-ray photoelectron spectroscopy (SXPS and HAXPES) with reflection electron energy loss spectroscopy (REELS) and a multi-tiered ab-initio theoretical approach, including density functional theory (DFT) and many-body perturbation theory (G0W0 and GW+C), to disentangle the complex set of experimentally observed satellite features attributed to the generation of plasmons and interband transitions. This combined experiment-theory strategy is able to uncover previously undocumented satellite features, improving our understanding of their direct relationship to tungsten's electronic structure. Furthermore, it lays the groundwork for future studies into tungsten based mixed-metal systems and holds promise for the re-assessment of the photoelectron spectra of other transition and post-transition metals, where similar questions regarding satellite features remain.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Chemistry
Dept of Chemistry
Dept of Chemistry
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by