UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Optima TB: A tool to help optimally allocate tuberculosis spending.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Goscé L, Abou Jaoude GJ, Kedziora DJ, Benedikt C, Hussain A, Jarvis S, Skrahina A, Klimuk D, Hurevich H, Zhao F, Fraser-Hurt N, Cheikh N, Gorgens M, Wilson DJ, Abeysuriya R, Martin-Hughes R, Kelly SL, Roberts A, Stuart RM, Palmer T, Panovska-Griffiths J, Kerr CC, Wilson DP, Haghparast-Bidgoli H, Skordis J, Abubakar I
  • Publication date:
    09/2021
  • Pagination:
    e1009255, ?
  • Journal:
    PLoS Comput Biol
  • Volume:
    17
  • Issue:
    9
  • Status:
    Published online
  • Country:
    United States
  • PII:
    PCOMPBIOL-D-20-02183
  • Language:
    eng
  • Keywords:
    Adolescent, Adult, Aged, Aged, 80 and over, Algorithms, Child, Child, Preschool, Computational Biology, Cost-Benefit Analysis, Female, Health Care Costs, Humans, Infant, Infant, Newborn, Male, Middle Aged, Models, Biological, Models, Economic, Prevalence, Prospective Studies, Republic of Belarus, Resource Allocation, Software, Tuberculosis, Young Adult
Abstract
Approximately 85% of tuberculosis (TB) related deaths occur in low- and middle-income countries where health resources are scarce. Effective priority setting is required to maximise the impact of limited budgets. The Optima TB tool has been developed to support analytical capacity and inform evidence-based priority setting processes for TB health benefits package design. This paper outlines the Optima TB framework and how it was applied in Belarus, an upper-middle income country in Eastern Europe with a relatively high burden of TB. Optima TB is a population-based disease transmission model, with programmatic cost functions and an optimisation algorithm. Modelled populations include age-differentiated general populations and higher-risk populations such as people living with HIV. Populations and prospective interventions are defined in consultation with local stakeholders. In partnership with the latter, demographic, epidemiological, programmatic, as well as cost and spending data for these populations and interventions are then collated. An optimisation analysis of TB spending was conducted in Belarus, using program objectives and constraints defined in collaboration with local stakeholders, which included experts, decision makers, funders and organisations involved in service delivery, support and technical assistance. These analyses show that it is possible to improve health impact by redistributing current TB spending in Belarus. Specifically, shifting funding from inpatient- to outpatient-focused care models, and from mass screening to active case finding strategies, could reduce TB prevalence and mortality by up to 45% and 50%, respectively, by 2035. In addition, an optimised allocation of TB spending could lead to a reduction in drug-resistant TB infections by 40% over this period. This would support progress towards national TB targets without additional financial resources. The case study in Belarus demonstrates how reallocations of spending across existing and new interventions could have a substantial impact on TB outcomes. This highlights the potential for Optima TB and similar modelling tools to support evidence-based priority setting.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Institute for Global Health
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by