UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A Memory-Efficient Learning Framework for SymbolLevel Precoding with Quantized NN Weights
  • Publication Type:
    Journal article
  • Authors:
    Mohammad A, Masouros C, Andreopoulos Y
  • Keywords:
    eess.SP, eess.SP
  • Notes:
    13 pages, 10 figures, Journal
Abstract
This paper proposes a memory-efficient deep neural network (DNN) framework-based symbol level precoding (SLP). We focus on a DNN with realistic finite precision weights and adopt an unsupervised deep learning (DL) based SLP model (SLP-DNet). We apply a stochastic quantization (SQ) technique to obtain its corresponding quantized version called SLP-SQDNet. The proposed scheme offers a scalable performance vs memory tradeoff, by quantizing a scale-able percentage of the DNN weights, and we explore binary and ternary quantizations. Our results show that while SLP-DNet provides near-optimal performance, its quantized versions through SQ yield 3.46x and 2.64x model compression for binary-based and ternary-based SLP-SQDNets, respectively. We also find that our proposals offer 20x and 10x computational complexity reductions compared to SLP optimization-based and SLP-DNet, respectively.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Electronic & Electrical Eng
Author
Dept of Electronic & Electrical Eng
Author
Dept of Electronic & Electrical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by