Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Automatic, global registration in laparoscopic liver surgery
  • Publication Type:
    Journal article
  • Authors:
    Koo B, Robu MR, Allam M, Pfeiffer M, Thompson S, Gurusamy K, Davidson B, Speidel S, Hawkes D, Stoyanov D, Clarkson MJ
  • Publication date:
  • Journal:
    International Journal of Computer Assisted Radiology and Surgery
  • Status:
  • Country:
  • PII:
  • Language:
  • Keywords:
    Augmented reality, Automatic registration, Deep learning, Image guidance, Laparoscopy, Semantic contour detection
  • Notes:
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
PURPOSE: The initial registration of a 3D pre-operative CT model to a 2D laparoscopic video image in augmented reality systems for liver surgery needs to be fast, intuitive to perform and with minimal interruptions to the surgical intervention. Several recent methods have focussed on using easily recognisable landmarks across modalities. However, these methods still need manual annotation or manual alignment. We propose a novel, fully automatic pipeline for 3D-2D global registration in laparoscopic liver interventions. METHODS: Firstly, we train a fully convolutional network for the semantic detection of liver contours in laparoscopic images. Secondly, we propose a novel contour-based global registration algorithm to estimate the camera pose without any manual input during surgery. The contours used are the anterior ridge and the silhouette of the liver. RESULTS: We show excellent generalisation of the semantic contour detection on test data from 8 clinical cases. In quantitative experiments, the proposed contour-based registration can successfully estimate a global alignment with as little as 30% of the liver surface, a visibility ratio which is characteristic of laparoscopic interventions. Moreover, the proposed pipeline showed very promising results in clinical data from 5 laparoscopic interventions. CONCLUSIONS: Our proposed automatic global registration could make augmented reality systems more intuitive and usable for surgeons and easier to translate to operating rooms. Yet, as the liver is deformed significantly during surgery, it will be very beneficial to incorporate deformation into our method for more accurate registration.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Dept of Med Phys & Biomedical Eng
Department of Surgical Biotechnology
Department of Surgical Biotechnology
Dept of Med Phys & Biomedical Eng
Dept of Computer Science
Dept of Med Phys & Biomedical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by