Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Reversible inactivation of ferret auditory cortex impairs spatial and non-spatial hearing
AbstractA central question in auditory neuroscience is how far brain regions are functionally specialized for processing specific sound features such as sound location and identity. In auditory cortex, correlations between neural activity and sounds support both the specialization of distinct cortical subfields, and encoding of multiple sound features within individual cortical areas. However, few studies have tested the causal contribution of auditory cortex to hearing in multiple contexts. Here we tested the role of auditory cortex in both spatial and non-spatial hearing. We reversibly inactivated the border between middle and posterior ectosylvian gyrus using cooling (n = 2) or optogenetics (n=1) as ferrets discriminated vowel sounds in clean and noisy conditions. Animals with cooling loops were then retrained to localize noise-bursts from multiple locations and retested with cooling. In both ferrets, cooling impaired sound localization and vowel discrimination in noise, but not discrimination in clean conditions. We also tested the effects of cooling on vowel discrimination in noise when vowel and noise were colocated or spatially separated. Here, cooling exaggerated deficits discriminating vowels with colocalized noise, resulting in increased performance benefits from spatial separation of sounds and thus stronger spatial release from masking during cortical inactivation. Together our results show that auditory cortex contributes to both spatial and non-spatial hearing, consistent with single unit recordings in the same brain region. The deficits we observed did not reflect general impairments in hearing, but rather account for performance in more realistic behaviors that require use of information about both sound location and identity.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by