UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Aberrant chromatin landscape following loss of the H3.3 chaperone Daxx in haematopoietic precursors leads to Pu.1-mediated neutrophilia and inflammation
  • Publication Type:
    Journal article
  • Authors:
    Gerber JP, Russ J, Chandrasekar V, Offermann N, Lee H-M, Spear S, Guzzi N, Maida S, Pattabiraman S, Zhang R, Kayvanjoo AH, Datta P, Kasturiarachchi J, Sposito T, Izotova N, Haendler K, Adams PD, Marafioti T, Enver T, Wenzel J, Beyer M, Mass E, Bellodi C, Schultze JL, Capasso M, Nimmo R, Salomoni P
  • Publisher:
    NATURE PORTFOLIO
  • Publication date:
    07/12/2021
  • Journal:
    Nature Cell Biology
  • Status:
    Published
  • Print ISSN:
    1476-4679
  • Language:
    English
  • Keywords:
    Science & Technology, Life Sciences & Biomedicine, Cell Biology, ENDOGENOUS RETROVIRUS K, STEM-CELLS, REPETITIVE ELEMENTS, HISTONE CHAPERONE, INTERFERON, PROTEIN, ATRX, PU.1, HETEROCHROMATIN, ACTIVATION
  • Notes:
    This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Defective silencing of retrotransposable elements has been linked to inflammageing, cancer and autoimmune diseases. However, the underlying mechanisms are only partially understood. Here we implicate the histone H3.3 chaperone Daxx, a retrotransposable element repressor inactivated in myeloid leukaemia and other neoplasms, in protection from inflammatory disease. Loss of Daxx alters the chromatin landscape, H3.3 distribution and histone marks of haematopoietic progenitors, leading to engagement of a Pu.1-dependent transcriptional programme for myelopoiesis at the expense of B-cell differentiation. This causes neutrophilia and inflammation, predisposing mice to develop an autoinflammatory skin disease. While these molecular and phenotypic perturbations are in part reverted in animals lacking both Pu.1 and Daxx, haematopoietic progenitors in these mice show unique chromatin and transcriptome alterations, suggesting an interaction between these two pathways. Overall, our findings implicate retrotransposable element silencing in haematopoiesis and suggest a cross-talk between the H3.3 loading machinery and the pioneer transcription factor Pu.1.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Research Department of Cancer Bio
Author
Research Department of Pathology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by