UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
The effect of non-uniform compression on the performance of polymer electrolyte fuel cells
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Kulkarni N, Cho JIS, Jervis R, Roberts EPL, Francesco I, Kok MDR, Shearing PR, Brett DJL
  • Publication date:
    15/02/2022
  • Journal:
    Journal of Power Sources
  • Volume:
    521
  • Status:
    Published
  • Print ISSN:
    0378-7753
Abstract
The mechanical compression used in the construction of PEFCs improves effective current collection and gas sealing, however it results in structural deformation of the MEA, affecting reactant transport with adverse consequences for the electrochemical performance of the cell. The present study uses X-ray CT to characterise MEA under compression and determine effective properties of the porous domain. The comprehensive modelling approach couples a structural model of the MEA under compression to a multi-phase, non-isothermal electrochemical performance model. Liquid water saturation in the cathode domain that promotes mass transport losses is validated with neutron radiography. Here, the structural model considers the fuel cell stacking process at three compressions and highlights the non-uniform distribution of porosity and effective properties under non-uniform cell compression, affecting localised current distribution and water transport. An increase in compression showed a negligible effect on the performance in the activation region, the performance was marginally improved in the ohmic region and significantly affected in mass transport region, promoting cell flooding. The non-uniform compression effects are found to be important considerations for robust modelling studies as it increases the nonuniformity in localised current, temperature and flooding that would further alter the durability of the fuel cell.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Dept of Chemical Engineering
Author
Dept of Chemical Engineering
Author
Faculty of Engineering Science
Author
Dept of Chemical Engineering
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by