Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Understanding the Photocatalytic Activity of La5Ti2AgS5O7 and La5Ti2CuS5O7 for Green Hydrogen Production: Computational Insights
  • Publication Type:
    Journal article
  • Authors:
    Brlec K, Kavanagh SR, Savory CN, Scanlon DO
  • Publisher:
    American Chemical Society (ACS)
  • Publication date:
  • Journal:
    ACS Applied Energy Materials
  • Status:
  • Print ISSN:
  • Language:
  • Keywords:
    photocatalytic water splitting La5Ti2AgS5O7 and La5Ti2CuS5O7 density functional theory surfaces band alignment
  • Notes:
    This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Green production of hydrogen is possible with photocatalytic water splitting, where hydrogen is produced while water is reduced by using energy derived from light. In this study, density functional theory (DFT) is employed to gain insights into the photocatalytic performance of La5Ti2AgS5O7 and La5Ti2CuS5O7─two emerging candidate materials for water splitting. The electronic structure of both bulk materials was calculated by using hybrid DFT, which indicated the band gaps and charge carrier effective masses are suitable for photocatalytic water splitting. Notably, the unique one-dimensional octahedral TiOxS6–x and tetragonal MS4 channels formed provide a structural separation for photoexcited charge carriers which should inhibit charge recombination. Band alignments of surfaces that appear on the Wulff constructions of 12 nonpolar symmetric surface slabs were calculated by using hybrid DFT for each of the materials. All surfaces of La5Ti2AgS5O7 have band edge positions suitable for hydrogen evolution; however, the small overpotentials on the largest facets likely decrease the photocatalytic activity. In La5Ti2CuS5O7, 72% of the surface area can support oxygen evolution thermodynamically and kinetically. Based on their similar electronic structures, La5Ti2AgS5O7 and La5Ti2CuS5O7 could be effectively employed in Z-scheme photocatalytic water splitting.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Chemistry
Dept of Chemistry
Dept of Chemistry
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by