Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to
your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Magnetic resonance imaging-based scores of small vessel diseases: Associations with intracerebral haemorrhage location
-
Publication Type:Journal article
-
Authors:Schwarz G, Banerjee G, Hostettler IC, Ambler G, Seiffge DJ, Brookes TS, Wilson D, Cohen H, Yousry T, Salman RA-S, Lip GYH, Brown MM, Muir KW, Houlden H, Jäger R, Werring DJ, Staals J
-
Publisher:Elsevier BV
-
Publication date:15/03/2022
-
Journal:Journal of the Neurological Sciences
-
Volume:434
-
Article number:120165
-
Status:Accepted
-
Language:English
-
Keywords:Intracerebral haemorrhage, Small vessel disease, Total SVD score, MRI-based score, Cerebral amyloid angiopathy, CAA score
-
Publisher URL:
-
Notes:© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Abstract
Introduction: Total small vessel disease (SVD) score and cerebral amyloid angiopathy (CAA) score are magnetic
resonance imaging-based composite scores built to preferentially capture deep perforator arteriopathy-related
and CAA-related SVD burden, respectively. Non-lobar intracerebral haemorrhage (ICH) is related to deep
perforator arteriopathy, while lobar ICH can be associated with deep perforator arteriopathy or CAA; however,
the associations between ICH location and these scores are not established.
Methods: In this post-hoc analysis from a prospective cohort study, we included 153 spontaneous non-cerebellar
ICH patients. Wald test, univariable and multivariable logistic regression analysis were performed to investigate
the association between each score (and individual score components) and ICH location.
Results: Total SVD score was associated with non-lobar ICH location (Wald test: unadjusted, p = 0.017; adjusted,
p = 0.003); however, no individual component of total SVD score was significantly associated with non-lobar
ICH. CAA score was not significantly associated with lobar location (Wald test: unadjusted, p = 0.056;
adjusted, p = 0.126); cortical superficial siderosis (OR 8.85 [95%CI 1.23–63.65], p = 0.030) and ≥ 2 strictly
lobar microbleeds (OR 1.63 [95%CI 1.04–2.55], p = 0.035) were related with lobar ICH location, while white
matter hyperintensities showed an inverse relation (OR 0.53 [95%CI 0.26–1.08; p = 0.081]).
Conclusions: Total SVD score was associated with non-lobar ICH location. The lack of significant association
between CAA score and lobar ICH may in part be due to the mixed aetiology of lobar ICH, and to the inclusion of
white matter hyperintensities, a non-specific marker of SVD type, in the CAA score.
› More search options
UCL Researchers
Show More