Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to
your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Crowding-induced phase separation of nuclear transport receptors in FG nucleoporin assemblies
-
Publication Type:Journal article
-
Authors:Davis LK, Ford IJ, Hoogenboom BW
-
Publisher:eLife Sciences Publications, Ltd
-
Publication date:31/01/2022
-
Journal:eLife
-
Volume:11
-
Article number:e72627
-
Medium:Print-Electronic
-
Status:Published
-
Country:England
-
PII:72627
-
Language:English
-
Keywords:Physics of living systems
-
Publisher URL:
-
Notes:This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third-party material in this article are included in the Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Abstract
The rapid (< 1 ms) transport of biological material to and from the cell nucleus is regulated by the nuclear pore complex (NPC). At the core of the NPC is a permeability barrier consisting of intrinsically disordered Phe-Gly (FG) nucleoporins (FG Nups). Various types of nuclear transport receptors (NTRs) facilitate transport by partitioning in the FG Nup assembly, overcoming the barrier by their affinity to the FG Nups, and comprise a significant fraction of proteins in the NPC barrier. In previous work Zahn et al. (2016), we revealed a universal physical behaviour in the experimentally observed binding of two well-characterized NTRs, NTF2 and the larger Importin-ᵝ, to different planar assemblies of FG Nups, with the binding behaviour defined by negative cooperativity. This was further validated by a minimal physical model that treated the FG Nups as flexible homopolymers and the NTRs as uniformly cohesive spheres. Here, we build upon our original study by first parametrizing our model to experimental data, and next predicting the effects of crowding by different types of NTRs. We show how varying the amounts of one type of NTR modulates how the other NTR penetrates the FG Nup assembly. Notably, at similar and physiologically relevant NTR concentrations, our model predicts demixed phases of NTF2 and Imp-ᵝ within the FG Nup assembly. The functional implication of NTR phase separation is that NPCs may sustain separate transport pathways that are determined by inter-NTR competition.
› More search options
UCL Researchers