UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
The effect of cell geometry and trigger method on the risks associated with thermal runaway of lithium-ion batteries
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Walker WQ, Cooper K, Hughes P, Doemling I, Akhnoukh M, Taylor S, Darst J, Billman J, Sharp M, Petrushenko D, Owen R, Pham M, Heenan T, Rack A, Magdsyuk O, Connolley T, Brett D, Shearing P, Finegan D, Darcy E
  • Publication date:
    15/03/2022
  • Journal:
    Journal of Power Sources
  • Volume:
    524
  • Status:
    Published
  • Print ISSN:
    0378-7753
Abstract
Consideration of thermal runaway heat output variability is paramount for the development of safe lithium-ion battery assemblies. This study utilizes data gathered from fractional thermal runaway calorimetry (FTRC) experiments to conduct a comparative analysis of thermal runaway heat output for three cell formats (18650, 21700, and 33600) as a function of trigger method (heaters, internal short-circuiting device, and nail penetration). The analysis is based on comparisons for the calculated total energy yield, fractional energy yield, heat rate, and heat flux. This study reveals that nail penetration tends to result in higher thermal runaway heat output for larger cells (21700 & 33600); these experiments also tended to result in higher fractions of the total energy being released through the cell body. The smaller cells (18650) did not appear to have significant variation in heat output as a function of trigger method. This finding suggests that, for this cell type, worst-case scenario heat output could be achievable in assembly level testing regardless of the utilized trigger method. This study also demonstrates successful translation of FTRC results, as recorded in the Battery Failure Databank, into meaningful analysis that breaks down the influence of specific conditions on thermal runaway heat output.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Dept of Chemical Engineering
Author
Dept of Chemical Engineering
Author
Dept of Chemical Engineering
Author
Dept of Chemical Engineering
Author
Dept of Chemical Engineering
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by