UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Borough-level COVID-19 forecasting in London using deep learning techniques and a novel MSE-Moran’s I loss function
  • Publication Type:
    Journal article
  • Authors:
    Olsen F, Schillaci C, Ibrahim M, Lipani A
  • Publisher:
    Elsevier BV
  • Publication date:
    04/2022
  • Journal:
    Results in Physics
  • Volume:
    35
  • Article number:
    105374
  • Medium:
    Print-Electronic
  • Status:
    Published
  • Country:
    Netherlands
  • Print ISSN:
    2211-3797
  • PII:
    S2211-3797(22)00145-0
  • Language:
    English
  • Keywords:
    COVID-19, Deep Learning, Epidemiological Modelling, LSTM, Pandemic
  • Notes:
    © 2022 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Abstract
Following its identification in late 2019, COVID-19 has spread around the globe, and been declared a pandemic. With this in mind, modelling the spread of COVID-19 remains important for responding effectively. To date research has focused primarily on modelling the spread of COVID-19 on national and regional scales with just a few studies doing so on a city and sub-city scale. However, no attempts have yet been made to design and optimize a model explicitly for accurately forecasting the spread of COVID-19 at sub-city scale. This research aimed to address this research gap by developing an experimental LSTM-ANN deep learning model. The model is largely autoregressive in nature as it considers temporally lagged borough-level COVID-19 cases data from the last 9 days, but also considers temporally lagged (i) borough-level NO2 concentration data, (ii) government stringency data, and (iii) climatic data from the last 9 days, as well as non-temporally variable borough-level urban characteristics data when modelling and forecasting the spread of the disease. The model was also encouraged to learn the spatial relationships between boroughs with regards to the spread of COVID-19 by a novel MSE-Moran's I loss function. Overall, the model's performance appears promising and so the model represents a useful tool for assisting the decision making and interventions of governing bodies within cities. A sensitivity analysis also indicated that of the non COVID-19 variables, the government stringency is particularly important in the modelling process, with this being closely followed by the climatic variables, the NO2 concentration data, and finally the urban characteristics data. Additionally, the introduction of the novel MSE-Moran's I loss function appeared to improve the model's forecasting performance, and so this research has implications at the intersection of deep learning and disease modelling. It may also have implications within spatio-temporal forecasting more generally because such a feature may have the potential to improve forecasting in other spatio-temporal applications.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Civil, Environ &Geomatic Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by