UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Deep hashing for global registration of untracked 2D laparoscopic ultrasound to CT
  • Publication Type:
    Journal article
  • Authors:
    Ramalhinho J, Koo B, Montaña-Brown N, Saeed SU, Bonmati E, Gurusamy K, Pereira SP, Davidson B, Hu Y, Clarkson MJ
  • Publisher:
    Springer Science and Business Media LLC
  • Publication date:
    02/04/2022
  • Journal:
    International Journal of Computer Assisted Radiology and Surgery
  • Medium:
    Print-Electronic
  • Status:
    Accepted
  • Country:
    Germany
  • PII:
    10.1007/s11548-022-02605-3
  • Language:
    English
  • Keywords:
    Convolutional neural networks, Deep hashing, Laparoscopic ultrasound, Multi-modal registration
  • Notes:
    This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Abstract
PURPOSE: The registration of Laparoscopic Ultrasound (LUS) to CT can enhance the safety of laparoscopic liver surgery by providing the surgeon with awareness on the relative positioning between critical vessels and a tumour. In an effort to provide a translatable solution for this poorly constrained problem, Content-based Image Retrieval (CBIR) based on vessel information has been suggested as a method for obtaining a global coarse registration without using tracking information. However, the performance of these frameworks is limited by the use of non-generalisable handcrafted vessel features. METHODS: We propose the use of a Deep Hashing (DH) network to directly convert vessel images from both LUS and CT into fixed size hash codes. During training, these codes are learnt from a patient-specific CT scan by supplying the network with triplets of vessel images which include both a registered and a mis-registered pair. Once hash codes have been learnt, they can be used to perform registration with CBIR methods. RESULTS: We test a CBIR pipeline on 11 sequences of untracked LUS distributed across 5 clinical cases. Compared to a handcrafted feature approach, our model improves the registration success rate significantly from 48% to 61%, considering a 20 mm error as the threshold for a successful coarse registration. CONCLUSIONS: We present the first DH framework for interventional multi-modal registration tasks. The presented approach is easily generalisable to other registration problems, does not require annotated data for training, and may promote the translation of these techniques.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Dept of Med Phys & Biomedical Eng
Author
Department of Surgical Biotechnology
Author
Department of Surgical Biotechnology
Author
Dept of Med Phys & Biomedical Eng
Author
Dept of Med Phys & Biomedical Eng
Author
Inst for Liver and Digestive Hlth
Author
Dept of Med Phys & Biomedical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by