Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Deep learning-based plane pose regression in obstetric ultrasound
  • Publication Type:
    Journal article
  • Authors:
    Di Vece C, Dromey B, Vasconcelos F, David AL, Peebles D, Stoyanov D
  • Publisher:
    Springer Science and Business Media LLC
  • Publication date:
  • Journal:
    International Journal of Computer Assisted Radiology and Surgery
  • Medium:
  • Status:
  • Country:
  • PII:
  • Language:
  • Keywords:
    Deep learning, Fetal ultrasound, Pose regression
  • Notes:
    This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
PURPOSE: In obstetric ultrasound (US) scanning, the learner's ability to mentally build a three-dimensional (3D) map of the fetus from a two-dimensional (2D) US image represents a major challenge in skill acquisition. We aim to build a US plane localisation system for 3D visualisation, training, and guidance without integrating additional sensors. METHODS: We propose a regression convolutional neural network (CNN) using image features to estimate the six-dimensional pose of arbitrarily oriented US planes relative to the fetal brain centre. The network was trained on synthetic images acquired from phantom 3D US volumes and fine-tuned on real scans. Training data was generated by slicing US volumes into imaging planes in Unity at random coordinates and more densely around the standard transventricular (TV) plane. RESULTS: With phantom data, the median errors are 0.90 mm/1.17[Formula: see text] and 0.44 mm/1.21[Formula: see text] for random planes and planes close to the TV one, respectively. With real data, using a different fetus with the same gestational age (GA), these errors are 11.84 mm/25.17[Formula: see text]. The average inference time is 2.97 ms per plane. CONCLUSION: The proposed network reliably localises US planes within the fetal brain in phantom data and successfully generalises pose regression for an unseen fetal brain from a similar GA as in training. Future development will expand the prediction to volumes of the whole fetus and assess its potential for vision-based, freehand US-assisted navigation when acquiring standard fetal planes.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Maternal & Fetal Medicine
Engineering Science Faculty Office
Maternal & Fetal Medicine
Maternal & Fetal Medicine
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by