Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Therapeutic Validation of GEF-H1 Using a De Novo Designed Inhibitor in Models of Retinal Disease
  • Publication Type:
    Journal article
  • Authors:
    Mills C, Hemkemeyer SA, Alimajstorovic Z, Bowers C, Eskandarpour M, Greenwood J, Calder V, Chan AWE, Gane PJ, Selwood DL, Matter K, Balda MS
  • Publisher:
  • Publication date:
  • Journal:
  • Volume:
  • Issue:
  • Article number:
  • Status:
  • Print ISSN:
  • Language:
  • Keywords:
    RhoA, tight junctions, inflammation, retinal pigment epithelium, endothelium
  • Notes:
    This is an open access article distributed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Inflammation and fibrosis are important components of diseases that contribute to the malfunction of epithelia and endothelia. The Rho guanine nucleotide exchange factor (GEF) GEF-H1/ARHGEF-2 is induced in disease and stimulates inflammatory and fibrotic processes, cell migration, and metastasis. Here, we have generated peptide inhibitors to block the function of GEF-H1. Inhibitors were designed using a structural in silico approach or by isolating an inhibitory sequence from the autoregulatory C-terminal domain. Candidate inhibitors were tested for their ability to block RhoA/GEF-H1 binding in vitro, and their potency and specificity in cell-based assays. Successful inhibitors were then evaluated in models of TGFβ-induced fibrosis, LPS-stimulated endothelial cell-cell junction disruption, and cell migration. Finally, the most potent inhibitor was successfully tested in an experimental retinal disease mouse model, in which it inhibited blood vessel leakage and ameliorated retinal inflammation when treatment was initiated after disease diagnosis. Thus, an antagonist that blocks GEF-H1 signaling effectively inhibits disease features in in vitro and in vivo disease models, demonstrating that GEF-H1 is an effective therapeutic target and establishing a new therapeutic approach.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Institute of Ophthalmology
Institute of Ophthalmology
Education (Div of Med)
Institute of Ophthalmology
Institute of Ophthalmology
Institute of Ophthalmology
Wolfson Inst for Biomedical Research
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by