UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Graph neural network for merger and acquisition prediction
  • Publication Type:
    Conference
  • Authors:
    Li Y, Shou J, Treleaven P, Wang J
  • Publication date:
    04/05/2022
  • Published proceedings:
    ICAIF 2021 - 2nd ACM International Conference on AI in Finance
  • ISBN-13:
    9781450391481
  • Status:
    Published
  • Name of conference:
    ICAIF'21: 2nd ACM International Conference on AI in Finance
Abstract
This paper investigates the application of graph neural networks (GNN) in Mergers and Acquisitions (M&A) prediction, which aims to quantify the relationship between companies, their founders, and investors. M&A is a critical management strategy to decide if the company is to grow or downsize, and M&A prediction has been a challenging research topic in the past few decades. However, the traditional methods of predicting M&A probability are only based on the company's fundamentals, such as revenue, profit, or news. Instead, GNN takes full advantage of those relationship data to expand feature dimension and improve the prediction result. Our M&A prediction solution integrates with the topic model for text analysis, advanced feature engineering, and several tricks to boost GNN. The approach achieves a high Area-Under-Curve score (AUC) 0.952, which is better than the previous record 0.888. The true positive rate is 83% with a low false positive rate 7.8%, which performance is better than the previous benchmark record 70.9%/10.6%.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by