Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Improving Neural Question Answering with Retrieval and Generation
  • Publication Type:
  • Authors:
    Lewis P
  • Date awarded:
  • Pagination:
    1, 286
  • Awarding institution:
    UCL (University College London)
  • Language:
Text-based Question Answering (QA) is a subject of interest both for its practical applications, and as a test-bed to measure the key Artificial Intelligence competencies of Natural Language Processing (NLP) and the representation and application of knowledge. QA has progressed a great deal in recent years by adopting neural networks, the construction of large training datasets, and unsupervised pretraining. Despite these successes, QA models require large amounts of hand-annotated data, struggle to apply supplied knowledge effectively, and can be computationally ex- pensive to operate. In this thesis, we employ natural language generation and information retrieval techniques in order to explore and address these three issues. We first approach the task of Reading Comprehension (RC), with the aim of lifting the requirement for in-domain hand-annotated training data. We describe a method for inducing RC capabilities without requiring hand-annotated RC instances, and demonstrate performance on par with early supervised approaches. We then explore multi-lingual RC, and develop a dataset to evaluate methods which enable training RC models in one language, and testing them in another. Second, we explore open-domain QA (ODQA), and consider how to build mod- els which best leverage the knowledge contained in a Wikipedia text corpus. We demonstrate that retrieval-augmentation greatly improves the factual predictions of large pretrained language models in unsupervised settings. We then introduce a class of retrieval-augmented generator model, and demonstrate its strength and flexibility across a range of knowledge-intensive NLP tasks, including ODQA. Lastly, we study the relationship between memorisation and generalisation in ODQA, developing a behavioural framework based on memorisation to contextualise the performance of ODQA models. Based on these insights, we introduce a class of ODQA model based on the concept of representing knowledge as question- answer pairs, and demonstrate how, by using question generation, such models can achieve high accuracy, fast inference, and well-calibrated predictions.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by