Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
X-ray Computed Tomography for Failure Mechanism Characterisation within Layered Pouch Cells
  • Publication Type:
    Journal article
  • Authors:
    Patel D, Reid H, Ball S, Brett DJL, Shearing PR
  • Publisher:
    Johnson Matthey
  • Publication date:
  • Journal:
    Johnson Matthey Technology Review
  • Status:
  • Print ISSN:
  • Language:
  • Notes:
    This article is Open Access under the terms of the Creative Commons CC BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Lithium-ion battery (LIB) safety is a multi-scale problem: from the whole-cell architecture to its composite internal 3D microstructures. Substantial research is required to standardise failure assessments and optimise cell designs to reduce the risks of LIB failure. In this work, the failure response of a 1 Ah layered pouch cell with a commercially available NMC cathode and graphite anode at 100 % SOC (4.2 V) is investigated. The mechanisms of two abuse methods; mechanical (by nail penetration) and thermal (by accelerating rate calorimetry) are compared by using a suite of post-mortem analysis methods. Post-mortem whole-cell architectural changes and electrode layer deformations were analysed for both mechanisms using non-invasive X-ray computed tomography. Furthermore, changes to electrode surfaces, bulk microstructures and particle morphologies are compared by following a proposed cell disassembly and post-mortem sample preparation methodology. Building on the insights into critical architectural weak points, electrode behaviours and particle cracks, the reliability of X-ray computed tomography as a guide for LIB failure assessment is demonstrated.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Chemical Engineering
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by