Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to
your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A Fully Implantable Opto-Electro Closed-Loop Neural Interface for Motor Neuron Disease Studies.
-
Publication Type:Journal article
-
Publication Sub Type:Article
-
Authors:Liu F, Wu Y, Almarri N, Habibollahi M, Lancashire HT, Bryson B, Greensmith L, Jiang D, Demosthenous A
-
Publication date:26/08/2022
-
Journal:IEEE Trans Biomed Circuits Syst
-
Volume:PP
-
Status:Published online
-
Country:United States
-
Language:eng
-
Author URL:
Abstract
This paper presents a fully implantable closed-loop device for use in freely moving rodents to investigate new treatments for motor neuron disease. The 0.18 µm CMOS integrated circuit comprises 4 stimulators, each featuring 16 channels for optical and electrical stimulation using arbitrary current waveforms at frequencies from 1.5 Hz to 50 kHz, and a bandwidth programmable front-end for neural recording. The implant uses a Qi wireless inductive link which can deliver >100 mW power at a maximum distance of 2 cm for a freely moving rodent. A backup rechargeable battery can support 10 mA continuous stimulation currents for 2.5 hours in the absence of an inductive power link. The implant is controlled by a graphic user interface with broad programmable parameters via a Bluetooth low energy bidirectional data telemetry link. The encapsulated implant is 40 mm × 20 mm × 10 mm. Measured results are presented showing the electrical performance of the electronics and the packaging method.
› More search options
UCL Researchers
Show More