Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to
your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Prototypical few-shot segmentation for cross-institution male pelvic
structures with spatial registration
-
Publication Type:Journal article
-
Authors:Li Y, Fu Y, Gayo I, Yang Q, Min Z, Saeed S, Yan W, Wang Y, Noble JA, Emberton M, Clarkson MJ, Huisman H, Barratt D, Prisacariu VA, Hu Y
-
Publication date:12/09/2022
-
Keywords:eess.IV, eess.IV, cs.CV
-
Author URL:
Abstract
The prowess that makes few-shot learning desirable in medical image analysis
is the efficient use of the support image data, which are labelled to classify
or segment new classes, a task that otherwise requires substantially more
training images and expert annotations. This work describes a fully 3D
prototypical few-shot segmentation algorithm, such that the trained networks
can be effectively adapted to clinically interesting structures that are absent
in training, using only a few labelled images from a different institute.
First, to compensate for the widely recognised spatial variability between
institutions in episodic adaptation of novel classes, a novel spatial
registration mechanism is integrated into prototypical learning, consisting of
a segmentation head and an spatial alignment module. Second, to assist the
training with observed imperfect alignment, support mask conditioning module is
proposed to further utilise the annotation available from the support images.
Extensive experiments are presented in an application of segmenting eight
anatomical structures important for interventional planning, using a data set
of 589 pelvic T2-weighted MR images, acquired at seven institutes. The results
demonstrate the efficacy in each of the 3D formulation, the spatial
registration, and the support mask conditioning, all of which made positive
contributions independently or collectively. Compared with the previously
proposed 2D alternatives, the few-shot segmentation performance was improved
with statistical significance, regardless whether the support data come from
the same or different institutes.
› More search options
UCL Researchers
Show More