Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to
your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A review of artificial intelligence in prostate cancer detection on imaging
-
Publication Type:Journal article
-
Authors:Bhattacharya I, Khandwala YS, Vesal S, Shao W, Yang Q, Soerensen SJC, Fan RE, Ghanouni P, Kunder CA, Brooks JD, Hu Y, Rusu M, Sonn GA
-
Publisher:SAGE Publications
-
Publication date:2022
-
Pagination:1, 31
-
Journal:Therapeutic Advances in Urology
-
Volume:14
-
Status:Published
-
Language:English
-
Publisher URL:
-
Notes:© The Author(s) 2022. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/).
Abstract
A multitude of studies have explored the role of artificial intelligence (AI) in providing diagnostic support to radiologists, pathologists, and urologists in prostate cancer detection, risk-stratification, and management. This review provides a comprehensive overview of relevant literature regarding the use of AI models in (1) detecting prostate cancer on radiology images (magnetic resonance and ultrasound imaging), (2) detecting prostate cancer on histopathology images of prostate biopsy tissue, and (3) assisting in supporting tasks for prostate cancer detection (prostate gland segmentation, MRI-histopathology registration, MRI-ultrasound registration). We discuss both the potential of these AI models to assist in the clinical workflow of prostate cancer diagnosis, as well as the current limitations including variability in training data sets, algorithms, and evaluation criteria. We also discuss ongoing challenges and what is needed to bridge the gap between academic research on AI for prostate cancer and commercial solutions that improve routine clinical care.
› More search options
UCL Researchers