UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Fate mapping reveals mixed embryonic origin and unique developmental codes of mouse forebrain septal neurons
  • Publication Type:
    Journal article
  • Authors:
    Magno L, Asgarian Z, Apanaviciute M, Milner Y, Bengoa-Vergniory N, Rubin AN, Kessaris N
  • Publisher:
    Springer Science and Business Media LLC
  • Publication date:
    27/10/2022
  • Journal:
    Communications Biology
  • Volume:
    5
  • Issue:
    1
  • Article number:
    1137
  • Status:
    Published
  • Language:
    English
  • Keywords:
    Cell fate and cell lineage, Developmental neurogenesis
  • Notes:
    This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Abstract
The septum is a key structure at the core of the forebrain that integrates inputs and relays information to other brain areas to support cognition and behaviours such as feeding and locomotion. Underlying these functions is a rich diversity of neuronal types and an intricate complexity of wiring across and within the septal region. We currently have very little understanding of how septal neuronal diversity emerges during development. Using transgenic mice expressing Cre in different subsets of telencephalic precursors we explored the origins of the three main neuronal types of the septal complex: GABAergic, cholinergic and glutamatergic neurons. We find that septal neurons originate from distinct neuroepithelial domains of the developing septum and are born at different embryonic time points. An exception to this is the GABAergic medial septal Parvalbumin-expressing population which is generated outside the septum from surrounding germinal zones. We identify the transcription factor BSX as being expressed in the developing glutamatergic neuron population. Embryonic elimination of BSX in the septum results in a reduction of septal glutamatergic cell numbers and a consequent deficit in locomotion. Further refinement of septal neuron diversity is needed to understand the multiple roles of septal neurons and their contribution to distinct behaviours.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Department of Targeted Intervention
Author
Wolfson Inst for Biomedical Research
Author
Department of Neuromuscular Diseases
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by