Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
The limits of metabolic heredity in protocells
  • Publication Type:
    Journal article
  • Authors:
    Nunes Palmeira R, Colnaghi M, Harrison SA, Pomiankowski A, Lane N
  • Publisher:
    The Royal Society
  • Publication date:
  • Journal:
    Proceedings of the Royal Society B: Biological Sciences
  • Volume:
  • Issue:
  • Article number:
  • Medium:
  • Status:
  • Country:
  • Language:
  • Keywords:
    autocatalysis, mathematical model, nucleotide cofactors, origin of life, protocells, protometabolism, Artificial Cells, Heredity, Carbon Dioxide, Fatty Acids, Amino Acids, Nucleotides
  • Notes:
    © 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
The universal core of metabolism could have emerged from thermodynamically favoured prebiotic pathways at the origin of life. Starting with H2 and CO2, the synthesis of amino acids and mixed fatty acids, which self-assemble into protocells, is favoured under warm anoxic conditions. Here, we address whether it is possible for protocells to evolve greater metabolic complexity, through positive feedbacks involving nucleotide catalysis. Using mathematical simulations to model metabolic heredity in protocells, based on branch points in protometabolic flux, we show that nucleotide catalysis can indeed promote protocell growth. This outcome only occurs when nucleotides directly catalyse CO2 fixation. Strong nucleotide catalysis of other pathways (e.g. fatty acids and amino acids) generally unbalances metabolism and slows down protocell growth, and when there is competition between catalytic functions cell growth collapses. Autocatalysis of nucleotide synthesis can promote growth but only if nucleotides also catalyse CO2 fixation; autocatalysis alone leads to the accumulation of nucleotides at the expense of CO2 fixation and protocell growth rate. Our findings offer a new framework for the emergence of greater metabolic complexity, in which nucleotides catalyse broad-spectrum processes such as CO2 fixation, hydrogenation and phosphorylation important to the emergence of genetic heredity at the origin of life.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Genetics, Evolution & Environment
Genetics, Evolution & Environment
Genetics, Evolution & Environment
Genetics, Evolution & Environment
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by