Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Finding the best clearing approach - Towards 3D wide-scale multimodal imaging of aged human brain tissue
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Rusch H, Brammerloh M, Stieler J, Sonntag M, Mohammadi S, Weiskopf N, Arendt T, Kirilina E, Morawski M
  • Publication date:
  • Journal:
  • Volume:
  • Status:
  • Print ISSN:
The accessibility of new wide-scale multimodal imaging techniques led to numerous clearing techniques emerging over the last decade. However, clearing mesoscopic-sized blocks of aged human brain tissue remains an extremely challenging task. Homogenizing refractive indices and reducing light absorption and scattering are the foundation of tissue clearing. Due to its dense and highly myelinated nature, especially in white matter, the human brain poses particular challenges to clearing techniques. Here, we present a comparative study of seven tissue clearing approaches and their impact on aged human brain tissue blocks (> 5 mm). The goal was to identify the most practical and efficient method in regards to macroscopic transparency, brief clearing time, compatibility with immunohistochemical processing and wide-scale multimodal microscopic imaging. We successfully cleared 26 × 26 × 5 mm3-sized human brain samples with two hydrophilic and two hydrophobic clearing techniques. Optical properties as well as light and antibody penetration depths highly vary between these methods. In addition to finding the best clearing approach, we compared three microscopic imaging setups (the Zeiss Laser Scanning Microscope (LSM) 880, the Miltenyi Biotec Ultramicroscope ll (UM ll) and the 3i Marianas LightSheet microscope) regarding optimal imaging of large-scale tissue samples. We demonstrate that combining the CLARITY technique (Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging compatible Tissue hYdrogel) with the Zeiss LSM 880 and combining the iDISCO technique (immunolabeling-enabled three-dimensional imaging of solvent-cleared organs) with the Miltenyi Biotec UM ll are the most practical and efficient approaches to sufficiently clear aged human brain tissue and generate 3D microscopic images. Our results point out challenges that arise from seven clearing and three imaging techniques applied to non-standardized tissue samples such as aged human brain tissue.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Imaging Neuroscience
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by