Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
On the Rational Boundedness of Cognitive Control: Shared Versus Separated Representations
  • Publication Type:
  • Authors:
    Musslick S, Saxe A, Hoskin AN, Reichman D, Cohen JD
  • publication date:
  • Place of publication:
  • Notes:
    type: article shorttitle: On the Rational Boundedness of Cognitive Control urldate: 2021-12-10 keywords: publications
One of the most fundamental and striking limitations of human cognition appears to be a constraint in the number of control-dependent processes that can be executed at one time. This constraint motivates one of the most influential tenets of cognitive psychology: that cognitive control relies on a central, limited capacity processing mechanism that imposes a seriality constraint on processing. Here we provide a formally explicit challenge to this view. We argue that the causality is reversed: the constraints on control-dependent behavior reflect a rational bound that control mechanisms impose on processing, to prevent processing interference that arises if two or more tasks engage the same resource to be executed. We use both mathematical and numerical analyses of shared representations in neural network architectures to articulate the theory, and demonstrate its ability to explain a wide range of phenomena associated with control-dependent behavior. Furthermore, we argue that the need for control, arising from the shared use of the same resources by different tasks, reflects the optimization of a fundamental tradeoff intrinsic to network architectures: the increase in learning efficacy associated with the use of shared representations, versus the efficiency of parallel processing (i.e., multitasking) associated with task-dedicated representations. The theory helps frame a formally rigorous, normative approach to the tradeoff between control-dependent processing versus automaticity, and relates to a number of other fundamental principles and phenomena concerning cognitive function, and computation more generally.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Gatsby Computational Neurosci Unit
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by