UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Agile Effort Estimation: Have We Solved the Problem Yet? Insights From A Replication Study
  • Publication Type:
    Journal article
  • Authors:
    Tawosi V, Moussa R, Sarro F
  • Publisher:
    Institute of Electrical and Electronics Engineers (IEEE)
  • Publication date:
    14/12/2022
  • Journal:
    IEEE Transactions on Software Engineering
  • Status:
    Accepted
  • Print ISSN:
    0098-5589
  • Language:
    English
  • Keywords:
    Software Effort Estimation, Story Point Estimation, Deep Learning
  • Notes:
    This is an Open Access article published under a Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/).
Abstract
In the last decade, several studies have explored automated techniques to estimate the effort of agile software development. We perform a close replication and extension of a seminal work proposing the use of Deep Learning for Agile Effort Estimation (namely Deep-SE), which has set the state-of-the-art since. Specifically, we replicate three of the original research questions aiming at investigating the effectiveness of Deep-SE for both within-project and cross-project effort estimation. We benchmark Deep-SE against three baselines (i.e., Random, Mean and Median effort estimators) and a previously proposed method to estimate agile software project development effort (dubbed TF/IDF-SVM), as done in the original study. To this end, we use the data from the original study and an additional dataset of 31,960 issues mined from TAWOS, as using more data allows us to strengthen the confidence in the results, and to further mitigate external validity threats. The results of our replication show that Deep-SE outperforms the Median baseline estimator and TF/IDF-SVM in only very few cases with statistical significance (8/42 and 9/32 cases, respectively), thus confounding previous findings on the efficacy of Deep-SE. The two additional RQs revealed that neither augmenting the training set nor pre-training Deep-SE play lead to an improvement of its accuracy and convergence speed. These results suggest that using semantic similarity is not enough to differentiate user stories with respect to their story points; thus, future work has yet to explore and find new techniques and features that obtain accurate agile software development estimates.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
Author
Dept of Computer Science
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by