Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to
your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
SCN1A and Dravet syndrome
-
Publication Type:Chapter
-
Authors:Rosch RE, Goldberg EM
-
Publication date:01/01/2022
-
Pagination:43, 63
-
ISBN-13:9780323984188
-
Status:Published
-
Book title:Febrile Seizures: New Concepts and Consequences
Abstract
Dravet syndrome (DS) is a severe neurodevelopmental disorder largely due to heterozygous pathogenic variants in SCN1A encoding the voltage-gated sodium channel α-subunit NaV1.1. DS is clinically defined by normal early childhood development followed by infantile onset of recurrent and prolonged seizures with prominent temperature sensitivity, as well as developmental delay, autism spectrum disorder, behavioral dysfunction, ataxia, and increased mortality. As the most temperature-sensitive form of epilepsy, the study of DS may enlighten our understanding of the mechanisms of febrile seizures more generally. The majority of DS-associated variants in SCN1A exert a loss of function effect on NaV1.1-containing sodium channels, which are critical for the generation and propagation of action potentials. NaV1.1 is preferentially expressed in GABAergic inhibitory interneurons throughout the brain, and specific subsets of interneurons are dysfunctional in DS, which may lead to a net impairment of synaptic inhibition as the pathomechanism underlying epilepsy in this syndrome. Extensive research on basic mechanisms of DS over the last 20years has provided important insights informing basic mechanisms underlying febrile seizures in general.
› More search options
UCL Researchers