Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to
your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Tissue specific LRRK2 interactomes reveal a distinct striatal functional unit
-
Publication Type:Journal article
-
Authors:Zhao Y, Vavouraki N, Lovering RC, Escott-Price V, Harvey K, Lewis PA, Manzoni C
-
Publisher:Public Library of Science (PLoS)
-
Publication date:30/01/2023
-
Journal:PLoS Computational Biology
-
Volume:19
-
Issue:1
-
Article number:e1010847
-
Medium:Print-Electronic
-
Status:Accepted
-
Country:United States
-
PII:PCOMPBIOL-D-22-00882
-
Language:English
-
Publisher URL:
-
Notes:© 2023 Zhao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Mutations in LRRK2 are the most common genetic cause of Parkinson's disease. Despite substantial research efforts, the physiological and pathological role of this multidomain protein remains poorly defined. In this study, we used a systematic approach to construct the general protein-protein interactome around LRRK2, which was then evaluated taking into consideration the differential expression patterns and the co-expression behaviours of the LRRK2 interactors in 15 different healthy tissue types. The LRRK2 interactors exhibited distinct expression features in the brain as compared to the peripheral tissues analysed. Moreover, a high degree of similarity was found for the LRRK2 interactors in putamen, caudate and nucleus accumbens, thus defining a potential LRRK2 functional cluster within the striatum. The general LRRK2 interactome paired with the expression profiles of its members constitutes a powerful tool to generate tissue-specific LRRK2 interactomes. We exemplified the generation of the tissue-specific LRRK2 interactomes and explored the functions highlighted by the "core LRRK2 interactors" in the striatum in comparison with the cerebellum. Finally, we illustrated how the LRRK2 general interactome reported in this manuscript paired with the expression profiles can be used to trace the relationship between LRRK2 and specific interactors of interest, here focusing on the LRRK2 interactors belonging to the Rab protein family.
› More search options
UCL Researchers