UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Evolution of neural activity in circuits bridging sensory and abstract knowledge
  • Publication Type:
    Journal article
  • Authors:
    Mastrogiuseppe F, Hiratani N, Latham P
  • Publisher:
    eLife Sciences Publications, Ltd
  • Publication date:
    07/03/2023
  • Journal:
    eLife
  • Volume:
    12
  • Article number:
    e79908
  • Medium:
    Electronic
  • Status:
    Published
  • Country:
    England
  • Print ISSN:
    2050-084X
  • PII:
    79908
  • Language:
    English
  • Notes:
    © 2023, Mastrogiuseppe et al. This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use and redistribution provided that the original author and source are credited.
Abstract
The ability to associate sensory stimuli with abstract classes is critical for survival. How are these associations implemented in brain circuits? And what governs how neural activity evolves during abstract knowledge acquisition? To investigate these questions, we consider a circuit model that learns to map sensory input to abstract classes via gradient-descent synaptic plasticity. We focus on typical neuroscience tasks (simple, and context-dependent, categorization), and study how both synaptic connectivity and neural activity evolve during learning. To make contact with the current generation of experiments, we analyze activity via standard measures such as selectivity, correlations, and tuning symmetry. We find that the model is able to recapitulate experimental observations, including seemingly disparate ones. We determine how, in the model, the behaviour of these measures depends on details of the circuit and the task. These dependencies make experimentally testable predictions about the circuitry supporting abstract knowledge acquisition in the brain.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Gatsby Computational Neurosci Unit
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by